Пример: Боевой устав сухопутных войск
Я ищу:

Все темы рефератов / Медицина /

Кариотип человека


Страницы документа
 предыдущая  следующая 
... 4 5 6 7 8 9 10 11 




Cкачать реферат



митозе. К центромерам прикрепляются нити веретена.

Теломеры - специальные структуры на концах хромосом - также имеют сложное строение. В их состав входит несколько хромомер. Теломеры предотвращают концевое присоединение метафазных хромосом друг к другу. Отсутствие теломеров делает хромосому "липкой" - она легко присоединяется к другим фрагментам хромосом.

Одни участки хромосомы называются эухроматиновыми, другие - гетерохроматиновыми. Эухроматиновые районы хромосом - это генетически активные участки, они содержат основной комплекс функционирующих генов ядер. Потеря даже мельчайшего фрагмента эухроматина может вызвать гибель организма. Гетерохроматиновые районы хромосом - обычно сильно спирализованы и, как правило, генетически мало активны. В гетерохроматине находится ядрышковый организатор. Потеря даже значительной части гетерохроматина часто не приводит организм к гибели. Гетерохроматиновые участки хромосомы реплицируются позднее, чем эухроматиновые. Следует помнить, что эухроматин и гетерохроматин - это не вещество, а функциональное состояние хромосомы.

Если расположить фотографии гомологичных хромосом по мере возрастания их размеров, то можно получить так называемую идиограмму кариотипа. Таким образом, идиограмма - это графическое изображение хромосом. На идиограмме пары гомологов располагаются рядами в порядке убывающего размера.

У человека на идиограмме среди 46 хромосом различают три типа хромосом в зависимости от положения в хромосоме центромер:

1. Метацентрические - центромера занимает центральное положение в хромосоме, оба плеча хромосомы имеют почти одинаковую длину;

2. Субметацентрические - центромера располагается ближе к одному концу хромосомы, в результате чего плечи хромосомы разной длины.

Классификация хромосом человека по размеру и расположению центромера

Группа хромосом

Номер по кариотипу

Характеристика хромосом

А(1)

1,2,3

1 и 3 почти метацентрические и 2-крупная субметацентрическая

В (11)

4,5

крупные субакроцентрические

С (III)

6-12

средние субметацентрические

A(lV)

13-15

средние акроцентрические

E(V)

16-18

мелкие субметацентрические

F(VI)

19-20

самые мелкие мегацентрические

G(VII)

21-22

самые мелкие акроцентрические

Х-хромосома (относится к III группе

23

средняя почти метацентрическая

Y-хромосома

23

мелкая акроцентрическая

3. Акроцентрические - центромера находится у конца хромосомы. Одно плечо очень короткое, другое длинное. Хромосомы не очень легко отличать одну от другой. Цитогенетики с целью унификации методов идентификации хромосом на конференции в 1960 г. в г. Денвере (США) предложили классификацию, учитывающую величину хромосом и расположения центромер. Патау в том же году дополнил эту классификацию и предложил разделить хромосомы на 7 групп. Согласно этой классификации, к первой группе А относятся крупные 1, 2 и 3 суб- и акроцентрические хромосомы. Ко второй группе В - крупные Субметацентрические пары 4-5. К третьей группе С относятся средние субакроцентрические (6-12 пары) и Х-хромосома, которая по величине находится между 6 и 7 хромосомами. К группе Д (четвертой) относятся средние акроцентрические хромосомы (13, 14 и 15 пары). К группе Е (пятой)- мелкие Субметацентрические хромосомы (16, 17 и 18 пары). К группе F (шестой) мелкие метацентрические (19 и 20 пары), а к группе G (седьмой) - самые мелкие акроцентрические хромосомы (21 и 22 пары) и мелкая акроцентрическая половая Y-хромосома (табл. 4).

Существуют и другие классификации хромосом (Лондонская, Парижская, Чикагская), в которых развиты, конкретизированы и дополнены положения Денверской классификации, что в конечном итоге облегчает идентификацию и обозначение каждой из хромосом человека и их частей.

Акроцентрические хромосомы IV группы (Д, 13-15 пары) и группы VII (G, 21-22 пары) на коротком плече несут маленькие дополнительные структуры, так называемые сателлиты. В некоторых случаях эти сателлиты являются причиной сцепления хромосом между собой при делении клеток в мейозе, вследствие чего происходит неравномерное распределение хромосом. В одной половой клетке оказывается 22 хромосомы, а в другой - 24. Так возникают моносомии и трисомии по той или иной паре хромосом. Фрагмент одной хромосомы может присоединиться к хромосоме другой группы (например, фрагмент 21 или 22 присоединяется к 13 или 15). Так возникает транслокация. Трисомия 21-й хромосомы или транслокация ее фрагмента являются причиной болезни Дауна.

Внутри семи этих групп хромосом на основании лишь внешних различий, видимых в простой микроскоп, провести идентификацию хромосом почти невозможно. Но при обработке хромосом акрихини притом и при помощи ряда других методов окраски их можно идентифицировать. Известны различные

способы дифференциальной окраски хромосом по Q-, G-, С-технике (А. Ф.Захаров, 1973) (рис. 27). Назовем некоторые методы идентификации индивидуальных хромосом человека. Широко применяются различные модификации так называемого метода Q. Например, метод QF - с использованием флюорохромов; метод QFQ - с использованием акрихина; метод QFH - с использованием специального красителя фирмы "Хекст" № 33258, выявляющего повторяющиеся последовательности нуклеотидов в ДНК хромосом (сателлитную ДНК и т. п.). Мощным средством изучения и индивидуальной характеристики хромосом являются модификации трипсинового метода GT. Назовем, например, GTG-метод, включающий обработку хромосом трипсином и окраску красителем Гимза, GTL-метод (обработка трипсином и окраска по Лейтману).

Известны методы с обработкой хромосом ацетатными солями и красителем Гимза, методы с использованием гидроокиси бария, акридиноранжа и другие.

ДНК хромосом выявляется при помощи реакции Фельгена, окраски метиловым зеленым, акридиноранжем, красителем № 33258 фирмы "Хекст". Акридиноранжевый краситель с ДНК однонитчатой образует димерные ассоциаты и дает красную люминесценцию, с двунитчатой спиральной ДНК образует одномерные ассоциаты и люминесцирует зеленым светом.

Измеряя интенсивность красной люминесценции, можно судить о количестве свободных мест в ДНП и хроматине, а отношение зеленая - красная люминесценция - о функциональной активности хромосом.

Гистоны и кислые белки хромосом выявляются при различных рН окраской бромфенодовым синим, зеленым прочным, серебрением, иммунолюминесцентным методом, РНК - окраской галлюцианиновыми квасцами, красителем фирмы "Хекст" № 1, акридиноранжем при нагревании до 60°.

Широко применяются электронная микроскопия, гистоавторадиография и ряд других методов.

В 1969 г. шведский биолог Т. Касперссон и его сотрудники показали, что хромосомы, окрашенные горчичным акрихином и освещенные под микроскопом Наиболее длинноволновой частью ультрафиолетового спектра, начинают люминесцировать, причем одни участки хромосом светятся ярче, другие слабее. Причина этого - разный химический состав поверхности хромосомы. В последующие годы исследователи обнаружили, что концы Y-хромосомы человека светятся ярче любой другой хромосомы человека, поэтому Y-хромосому легко заметить на препарате.

Акрихиниприт преимущественно связывается с ГЦ-парами ДНК. Флюоресцируют отдельные диски гетерохроматиновых участков. Удаляют ДНК - свечение исчезает. Составлены карты флюоресцирующих хромосом. Из 27 видов


Страницы документа
... 4 5 6 7 8 9 10 11 
Кариотип человека